Center for Cognitive Applications (CAPS)
CAPS is a multidisciplinary research center bringing together scientists from a number of different academic units (psychology, linguistics, philosophy, management, engineering, anthropology) as well as local industry and other academic institutions in upstate New York.
The CAPS center mission is defined by two central pillars: 1) promoting the multi- and interdisciplinary efforts and connections that set the foundations of cognitive science as a discipline and; 2) developing new avenues to disseminate and apply robust principles discovered in cognitive science research to the benefit of ßÙßÇÂþ» and the broader community. The center provides a forum for discussion and conducting research, and provides resources in support of research. In addition to an active speaker series with local, national and international participants, the center supports and coordinates interdisciplinary courses and research projects and also provides some direct support for research projects and for presentation of research findings.
CAPS Research Opportunities
Member labs in the CAPS center offer research experiences to interested undergraduate students. Most of the labs will ask for a commitment of more than one term, and students should expect to spend (in general) at least 10 hours/week working in the lab. The Psychology Department offers independent study (PSYC 392 and 397) as well as honors research (PSYC 499) opportunities for undergraduates. Students interested in this type of research experience should contact the lab in which they are interested in working. Opportunities are available at various times throughout the year.
CAPS Research Areas
ßÙßÇÂþ»'s Center for Cognitive Applications brings together researchers from several academic units along with representatives from local industries and other educational institutions in the region to support research and training in various areas of basic and applied cognitive science.
The center supports research and training in various areas of cognitive science, including research into the nature, structure and development of language skills; conceptual and neural modeling of human thought, memory and decision processes; analogous modeling of cognitive processes in animals; and investigations of perceptual processes in multiple sensory channels as well as inter-sensory integration.
Areas on which CAPS researchers are focused:
-
Categorization and reasoning
A key purpose of cognitive activity in the human mind is making sense of the world around us. To scientifically account for this process of ordering our experience, we must address:
-
How knowledge is used as a basis for comprehension and reasoning.
-
How such knowledge is acquired and organized.
Much of the work done in the laboratory focuses on two cognitive mechanisms that serve as a bridge between perceptual experience and stored knowledge.
Categorization is the process of interpreting an example as a member of a known class or concept, and the comparison is the process of interpreting an example with respect to (or in light of) another.
Categorization and comparison processes serve to guide interpretation in terms of prior knowledge, but can also guide learning or conceptual change by updating the knowledge itself. Our work in the lab consists of behavioral studies of the nature and roles of categorization and comparison along with the design of neural network models used to instantiate theoretical claims and simulate human learning and cognitive performance.
Kenneth Kurtz, PhD
kkurtz@binghamton.edu
607-777-3679 -
-
Elementary information processing
The specific area of specialization is information processing in animals and humans, including learning, memory and decision-making. Although our research team in recent years has worked in the framework of Pavlovian conditioning, integration with both the physiological and human cognitive literature is sought at the theoretical level.
Recent work has been concerned with distinguishing perception, acquisition, storage, retention, retrieval and response generation, using impediments to performance such as blocking, overshadowing, associative interference and CS and US-pre-exposure effects to understand the processing of acquired information. We have found that training and test contexts (i.e., background stimuli) play a central role in modulating acquired behavior.
Present research continues to examine these issues, particularly to determine how retrieval processes can explain phenomena that are traditionally attributed to differences in acquisition. Experiments are being conducted to see if the retrieval rule that we have formulated based on a modified form of contingency theory (the Extended Comparator Hypothesis) can explain sufficient behavioral variation to allow simplification of contemporary theories of conditioning.
For example, with this retrieval rule, behavior indicative of conditioned inhibition can be explained in terms of a decrease in US likelihood as opposed to associations to the absence of a US, i.e., negative associations.
A second avenue of research is concerned with the role of temporal relationships between events in elementary learning. Our data indicate that temporal proximity not only fosters the formation of associations but is invariably part of what gets encoded within the association. Moreover, this temporal information is a critical determinant of how the association will later be expressed in behavior. Our work in this area is summarized in what we call the Temporal Coding Hypothesis.
Other studies are examining the various properties of occasion setters (i.e., conditional discriminative stimuli). For instance, we are attempting to determine if occasion setters obey rules analogous to those known to govern Pavlovian excitatory conditioned stimuli. Additional research focuses on similarities and differences in Pavlovian conditioning, contingency judgment and causal attribution by animals and humans.
Ralph Miller, PhD
rmiller@binghamton.edu
Phone: 607-777-2291 -
Human memory studies
Research is in the area of human memory. Most research has been concerned with the processes underlying recognition memory. Current experiments investigate the contribution of perceptual fluency to different types of recognition tasks.
It has been theorized that recognition memory decisions are determined, in part, by the perceptual fluency of the recognition probe. The relationship between perceptual fluency and recognition memory appears to be mediated by an attributional process whereby an enhanced level of fluency is interpreted as a sign that a stimulus has occurred in the past. That is, fluency is used as a heuristic in recognition memory decisions.
The work that is currently being conducted in the lab investigates the degree to which fluency contributes to different types of recognition decision (e.g., Westerman, 2001), and the degree to which perceptual changes and the strength of the memory trace moderate the role that fluency plays in recognition decisions (e.g., Lloyd, Westerman & Miller, 2002; Westerman, Lloyd, & Miller, 2002; Westerman, Miller, & Lloyd, 2003).
Our research on this topic suggests the attributional process that mediates the link between perceptual fluency is very sophisticated and is subject to meta-cognitive control.
Deanne Westerman, PhD
wester@binghamton.edu
Phone: 607-777-4171 - Memory studies in infants and children
Research in the Baby Lab is directed toward examination of the perceptual and memory abilities of infants and young children. Investigation of the perceptual and attention processes that influence the formation of visual memories and exploration of the structure and content of visual representations comprise the primary foci of our research effort.
Processes from all three areas are likely highly interrelated, and thus we are currently investigating questions regarding the influence of basic perceptual processes on the representation of visual stimuli, and questions regarding the influence of attention on memory in both infants and children.
We use theories and research from labs using adults as participants to inform our research, as this leads to novel questions and directions in many instances. The director previously studied the effects of viewpoint changes on the representation underlying adult object recognition.
We are currently investigating the ontogenetic beginnings of this ability, as well as investigating questions regarding the relationship between what is known about the physiology of the early visual system (which we do not study) and the psychophysical functioning of infant vision (which we do study). Overall, our research is directed toward understanding, in a developmental framework, the interaction of perception and memory in higher-level vision.
Peter Gerhardstein, PhD
gerhard@binghamton.edu
607-777-4387 - Language comprehension
The primary goal of research is to work toward a theory that specifies how readers comprehend text. A complete theory of discourse comprehension will have to specify the nature of the memory representation that readers create, as well as the cognitive processes involved in building that representation. As a starting point, we know that readers' representation of a narrative does not simply include the information explicitly stated in the narrative. Readers incorporate information from general knowledge, make connections between ideas that are physically distant in the text, keep some aspects of the text more active in memory than others and so on.
The goal of research is to work toward a theory that specifies the processes involved in building a discourse representation, accounting for all of the relevant text and reader characteristics.
Despite the complexities involved in studying a higher-level process such as discourse processing, research has been guided by a "bottom-up" framework based on the premise that many of the processes underlying discourse comprehension are automatic. According to this view, sometimes referred to as a memory-based text processing view, each text input (i.e., word or clause) automatically causes related information in memory to become activated.
A subset of those reactivated concepts is then integrated into a subsequent stage. Although there are clearly processes involved in reading that are strategic, it is the automatic components of discourse processing that are most amenable to scientific study, and thus provide a good starting point.
Further, this approach simplifies the study of a complex phenomenon and provides a useful bridge between the field of discourse comprehension and the broader field of memory research; a central tenet of the memory-based text processing framework is that text inputs act like any other input to memory. Thus, in addition to working toward the specific goal of understanding discourse comprehension, my research contributes more generally to the study of memory.
Celia Klin, PhD
cklin@binghamton.edu
607-777-4934 - Auditory Cognitive Neuroscience
Our research aims to understand the perceptual, cognitive, and neural basis of human speech communication. We specifically focus on investigating how listeners make sense of complex sounds like speech, how cognitive mechanisms like attention and working memory contribute to spoken language processing, and how listeners learn novel sound categories like foreign speech sounds. To answer these questions, our research uses psychophysics and psycholinguistics paradigms, multimodal EEG and fMRI neuroimaging, pupillometry, and computational modeling.
Sung-Joo Lim, PhD
sungjoo@binghamton.edu
CAPS Research Center Faculty
CORE Members:
-
Peter Gerhardstein: visual perception and memory, cognitive development
-
Celia Klin: reading comprehension, memory
-
Kenneth Kurtz: concepts and category learning, similarity and analogy, neural network models of cognition, knowledge representation
-
Ralph Miller: elementary information processing (animals/humans)
- Sung-Joo Lim: auditory Cognitive Neuroscience
- Cyma Van Petten: psycholinguistics, memory, ERPs
- Deanne Westerman: human memory, face recognition, memory illusions
AFFILIATED Members:
-
Andreas D Pape: Economics
-
Candace A Mulcahy: Teaching, Learning and Educational Leadership
-
Chou-Yu Tsai: School of Management
- Guanhua Yan: Computer Science
-
Lijun Yin: Computer Science
- Ozlem Tonguc: Economics
- Ping Yang: Computer Science
- Xingye Qiao: Mathematical Sciences
- Hiroki Sayama: Systems Science and Industrial Engineering
- Shelley D Dionne: School of Management
- Shiqi Zhang: Computer Science
- Zhongfei Zhang: Computer Science
CAPS Student Travel Awards
Introduction
Graduate student members of the CAPS center are eligible to apply for travel awards to attend conferences in which they present research findings from work done in a CAPS research lab. Each student can receive one award per year, and the student must be a member of a full CAPS-associated lab (not an affiliated lab). Awards are made up to $300 and can be used for air travel, hotel accommodations, and registration expenses. The CAPS center will not reimburse food expenses. Note that additional funding is available to graduate students from the Graduate Student Organization and the Graduate School.
How to apply
Prior to attending the conference, students should send an email request to the CAPS GA. Application materials including a photocopy of a program or other announcement showing the student's accepted presentation should be submitted to the CAPS GA as well.